Nomenclatura
Um número decimal é formado por duas partes, uma chamada de parte inteira e a outra chamada de parte decimal. Por exemplo, em 23,4871, a parte inteira é 23 e a parte decimal é 4871. Ainda organizamos a parte decimal da seguinte forma: décimo, centésimo, milésimo, décimo de milésimo, centésimo de milésimo e assim por diante. Observe o número 4,2467, nele temos:

Adição e subtração entre Números Decimais
Tanto a adição quanto a subtração de números decimais são realizadas de forma semelhante à adição e à subtração de números inteiros. Nessas operações, devemos somar parte inteira com parte inteira, décimos com décimos, centésimos com centésimos e assim sucessivamente. Para montagem do algoritmo, devemos colocar vírgula abaixo de vírgula.
Exemplo resolvido:
Resolva as seguintes operações:
a) 1,345 + 3,781
b) 4,3 + 2,11 + 3,234
c) 12,11 – 9,411
Resolução:
Lembre-se que o número 0 no final de qualquer número decimal tem função não significativa, ou seja, não acresce no valor. Note que iremos colocar vírgula abaixo de vírgula. Assim:
Em a), temos:
\[\frac{+\begin{matrix} 1,345 \\ 3,781 \\ \end{matrix}}{\text{ 5}\text{,126}}\]
Em b), note que iremos acrescentar zeros em casas não significativas:
\[\frac{+\begin{matrix} 4,300 \\ 2,110 \\ 3,234 \\ \end{matrix}}{\text{ 5}\text{,126}}\]
Em c), iremos também acrescentar zero em casas não significativas.
\[\frac{-\begin{matrix} 12,110 \\ \text{ }9,411 \\ \end{matrix}}{\text{ 2}\text{,699}}\]
Multiplicação com Números Decimais
A operação de multiplicação entre dois números decimais segue o mesmo formato dos números inteiros. Faça a operação de forma que a vírgula não esteja na operação e, ao final, some a quantidade de casas decimais dos dois números e, contando da direita para esquerda, coloque a vírgula no resultado.
Exemplo resolvido
Obter o valor que representa a multiplicação do número 3,41 por 2,6.
Resolução:
Ao montar o algoritmo da multiplicação entre os números, note que não há necessidade de colocar vírgula após vírgula. Como o número 3,41 tem duas casas após a vírgula e 2,6 tem uma casa após a vírgula, o resultado terá 2 + 1 = 3 casas decimais após a vírgula.
\[\begin{align} & 3,41 \\ & \underline{\times 2,6} \\ & 2046 \\ \end{align}\]
\[\begin{align} & \underline{682+} \\ & 8,866 \\ \end{align}\]
\[\begin{align} & 3,41 \\ & \underline{\times 2,6} \\ & 2046 \\ & \underline{682+} \\ & 8,866 \\ \end{align}\]
Divisão entre Números Decimais
Para efetuarmos a divisão entre dois números decimais, devemos, primeiramente, organizar de maneira que tenhamos a mesma quantidade de casas decimais nos dois números, mas de que forma? Acrescentando zeros em casas não significativas. Após isso, efetuamos a divisão como se a vírgula não existisse. Quando o divisor for maior que o dividendo, devemos colocar uma vírgula no quociente e multiplicar por 10 o dividendo. Para cada casa decimal que pretendemos, faremos o mesmo processo, com exceção de acrescentar vírgula. Vejo o caso abaixo passo a passo:
Exemplo resolvido
Efetuar a divisão entre os números 1,024 e 6,4.
Resolução:
Montamoso algoritmo:
\[1,024\left|\!{\underline {\, 6,4 \,}} \right. \]
Note que as quantidades de casas decimais são diferentes. Então, iremos acrescentar uma quantidade de zeros conforme a necessidade, em posições não significativas, para termos uma igualdade no número de casas decimais.
\[1,024\left|\!{\underline {\, 6,400 \,}} \right. \]
Agora podemos “ignorar” a vírgula, ficamos então com:
\[1,024\left|\!{\underline {\, 6400 \,}} \right. \]
Vemos que 1024 é menor que 6400; então, para continuarmos, colocamos 0 com vírgula no quociente e um zero no dividendo:
\[\begin{align} & 10240\left| \!{\underline {\, 6400 \,}} \right. \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0,\\ \end{align}\]
Dividindo 10240 por 6400 gera 1 e resto 3840:
\[\begin{align} & 10240\left|\!{\underline {\, 6400 \,}}\right. \\ &\underline{-6400}\,\,0,1 \\ & 38400 \\ \end{align}\]
Para continuarmos, acrescentamos um zero em 3840, gerando 38400. Continuamos adivisão de números inteiros:
\[\begin{align} & 10240\left|\!{\underline {\, 6400 \,}}\right. \\ &\underline{-6400}\,\,0,16 \\ &\frac{-\begin{matrix} 38400 \\ 38400 \\ \end{matrix}}{0} \\ \end{align}\]
Logo, o quociente da divisão é 0,16.